

(Re)designing Cost-Reflective Tariffs

Rob Passey & Navid Haghdadi

Centre for Energy and Environmental Markets (UNSW), IT Power (Australia), APVI

APVI Workshop "Cost-Reflective Pricing – some different perspectives"

Sydney, Ist June 2016

CRP is very complicated

- Tariffs divided into: transmission, distribution, retail/wholesale
- Distribution:
 - I. Augmentation costs SRMC and LRMC? decreasing demand peak?
 - 2. Sunk/residual costs how to allocate? historical responsibility?
 - 3. O&M costs just a per kWh charge?
- How to:
 - I. Calculate & allocate each of these
 - 2. Design tariffs that people want to take up, use and keep!
- Tariffs consist of structure and price components
- Here focus on
 - **Structure**, and how to design a tariff so that a household's bill correlates to its contribution to the demand peak and augmentation costs
 - Residual costs?

DNSP's demand charge tariffs in TSSs

 Demand charge-based tariffs from all DNSPs in Qld,Vic,ACT, Tas, SA, but not yet NSW

SAPN's Low Voltage Residential Actual Demand Tariff – DUOS 2017/18 (incl. GST)

Capacity - peak	Peak demand from 4 – 9pm (based on max half-hour demand) in each summer month. Every day. Rate: \$15.8358/kW/month (Nov – March)	
Capacity – off peak	Peak demand from 4 – 9pm (based on max half-hour demand) in each non-summer month. Every day. Rate: \$7.9162/kW/month (April – Oct)	
Energy	7.909c/kWh any time	
Fixed	A min 1kW off-peak capacity charge	

Comparing DNSPs demand charge tariffs

Characteristic	DNSP
Demand charge applied to 4 highest demand days in month	Ergon
Demand charge applied to single highest demand day in a month	Rest
Same demand charge all year	Energex, ActewAGL
Different rates in summer/non-summer months	Rest
Two peak periods in each day	ActewAGL, TasNetworks
Min demand charge as fixed daily charge	Ergon, SAPN, United Energy

Assessing demand charge tariffs

- Monthly demand rates converted to equivalent kW value
- Sum of monthly demand charges = IkW
- eg I. If demand charge rate is same each month, unitised demand charge in each month = 1/12 kW
- eg 2. If demand charge rate is twice as large in 6 months as in the other 6, then unitised demand charge
 - in higher months = 2/18 kW
 - in lower months = 1/18 kW
- Provides a visual correlation between what customer pays and the costs they impose on the network
- Also makes different tariffs easier to compare

Aggregated (network) demand

CC vs number of peaks

Low CC

High CC

CC vs number of peaks

UDC compared to first 5 network peaks

DC only during summer and winter

DC applied to coincident demand (all year)

Coincident demand pricing

Problem	In fact		
Customer won't know when peak is	Customer's own peak can occur at any time of day and all through year. Network peak is much more predictable.		
Tariff too complicated	Tariff identical to standard demand charge tariff ie. Charge applied between eg. 4.30 to 7.30 during summer/winter months.		
ls ex post (after the fact)	All elec bills are ex post. From customer's point of view is the same. Difference is that the DNSP has to		

.

Summer peaks are more aggregated

DC applied to coincident demand (all year)

DC applied to coincident dem summer & winter

Then no IkW min charge

Original SAPN demand charge tariff

Coincident dem, summer/winter, no 1kW

As previous but compared to single peak

Original SAPN demand charge tariff

Coincident dem, summer/winter, no 1kW

With IkW min removed

Then no IkW min charge

Conclusions

- Demand charges more cost-reflective if applied to coincident demand in summer and winter (for this dataset, but for other datasets the same principle applies)
- Comparisons to the '5 peaks' assumes some demand response
- Approach would work equally well for a rebate-based tariff

Residual costs ... peak to peak

Residual costs ... coincident peaks

Residual costs ... kWh vs own peaks

Residual costs ... kWh vs coincident peaks

Thank you Questions?

Mismatch - kW

Mismatch - kWh

Possible demand charge tariff

Annual Peak – Separate loads

Annual Peak – 20 houses

Summer peak?

Aggregated (network) peak is in summer, but

